A Study in Support Vector Machines

Todd Munson

Mathematics and Computer Science Division Argonne National Laboratory

Michael Ferris

Computer Sciences Department University of Wisconsin at Madison

Outline

- Support Vector Machines
- Complementarity Problem Formulation
- Interior-Point Method
- Semismooth Method
- Results

Support Vector Machines

- Given observations taken from p known populations
- Measure f features for each observation
- Construct a method that
 - 1. Places observations into the correct populations
 - 2. Has good generalization ability
- Concentrate on two population case
- Method will use a linear separating surface
- Extensions
 - Nonlinear separating surfaces
 - Multiple populations

Sample Applications

- Cancer Diagnosis 569 observations, 30 features
 - Categories malignant and benign tumors
 - Features cell radius, texture, convexity, symmetry
- Classification of Gene Expressions 2467 observations, 79 features
 - Categories proteasome, histone, cytoplasmic ribosomal protein
 - Features gene expression vectors at various times
 - * diauxic shift, mitosis, sporulation
- Income Prediction 48842 observations, 14 features
 - Categories income < or \ge \$50,000
 - Features age, work class, education, occupation
- Forest Cover 581012 observations, 54 features
 - Categories spruce, ponderosa pine, aspen
 - Features elevation, aspect, slope, soil type
- Intrusion Detection 4898431 observations, 41 features
 - Categories good and "bad" connections
 - Features duration, protocol, bytes sent

Target Application

- Income prediction using census data
- 60 million observations
 - 100% sampling of population of Britain
 - 20% sampling of US population
 - 1% sampling of world population

Separation Problem

- P_+ and P_- are two populations
- $A_{+} \in \Re^{m_1 \times k}$ and $A_{-} \in \Re^{m_2 \times k}$ measure characteristics
 - $-m_1$ and m_2 number of samples
 - -k number of features measured per sample
 - $-m_1+m_2\gg k$
- Separate populations with hyperplane: $\{x \mid x^T w = \gamma\}$

$$A_+w>e\gamma$$

$$A_- w < e \gamma$$

Normalize

$$A_+w-e\gamma \geq 1$$

$$A_-w-e\gamma \le -1$$

Example – separable data

Misclassification Minimization

• Let *D* be a diagonal matrix

$$D_{i,i} = \left\{egin{array}{ll} 1 & ext{if } i \in P_+ \ -1 & ext{if } i \in P_- \end{array}
ight.$$

• Separation condition

$$D(Aw - e\gamma) \ge 1$$

- Generally problems are not separable
- Minimize misclassification error

$$egin{array}{ll} \min_{w,\gamma,y} & rac{1}{2} \left\| y
ight\|_2^2 \ & ext{subject to} & D(Aw-e\gamma)+y \geq e \end{array}$$

Example – nonseparable data

Linear Support Vector Machine

- Select one with maximum separation margin
 - Gives good generalization
 - Tolerant of small errors in data
- Example formulation

$$egin{array}{ll} \min_{w,\gamma,y} & rac{1}{2} \left\|w
ight\|_2^2 + rac{
u}{2} \left\|y
ight\|_2^2 \ & ext{subject to} & D(Aw-e\gamma) + y \geq e \end{array}$$

- $-\frac{2}{\|w\|_2^2}$ separation margin
- $\|y\|_2^2 ext{misclassification error}$
- $-\nu$ weighting of the goals
- Support vectors observations with active constraint

Example – separable data

Example – nonseparable data

First Order Conditions

• Mixed linear complementarity problem

$$egin{aligned} 0 &= w - A^T D^T u \ 0 &= e^T D^T \mu \ 0 &=
u y - \mu \ 0 &\leq DAw - De\gamma + y - e & \bot & \mu \geq 0 \end{aligned}$$

- Substitute $w=A^TD^T\mu$ and $y=\frac{1}{\nu}\mu$ $0\leq \left(\frac{1}{\nu}I+DAA^TD^T\right)\mu-De\gamma-e\quad \perp\quad \mu\geq 0$ $0=e^TD^T\mu$
- Contains rank-k update to a positive definite matrix
- Problem has exactly one solution

General Framework

• Linear complementarity problem

$$\left[egin{array}{ccc} S+RR^T & -B^T \ B & 0 \end{array}
ight] \left[egin{array}{c} x \ \lambda \end{array}
ight] + \left[egin{array}{c} c \ -b \end{array}
ight] oldsymbol{eta} & \lambda ext{ free} \end{array}$$

- Characteristics
 - m variables
 - -n constraints and B has full row rank
 - Rank-k update to positive semi-definite matrix

Interior Point Method

• Apply interior point method to solve

$$(S+RR^T)x-B^T\lambda+c = z$$
 $Bx = b$
 $XZe = 0$
 $x \ge 0$, $z \ge 0$

• Perturb complementarity conditions

$$XZe = \tau$$

- Track solution as $au o 0^+$
- Maintain x > 0 and z > 0

Basic Algorithm (OOQP)

- Given $\sigma \in [0,1], \, (x^i,z^i) > 0$ and λ^i
- Define residuals

$$egin{array}{lll} r_a &=& z^i - (S + RR^T)x^i + B^T\lambda^i - c \ &r_b &=& b - Bx^i \ &r_c &=& -X^iZ^ie + \sigmarac{(x^i)^Tz^i}{m} \end{array}$$

• Generate direction

$$egin{bmatrix} S+RR^T & -B^T & -I \ B & 0 & 0 \ Z^i & 0 & X^i \end{bmatrix} egin{bmatrix} \Delta x \ \Delta \lambda \ \Delta z \end{bmatrix} = egin{bmatrix} r_a \ r_b \ r_c \end{bmatrix}$$

Direction Generation

1. Eliminate Δz

$$V := S + (Z^i)^{-1} X^i \ egin{bmatrix} V + RR^T & -B^T \ B & 0 \end{bmatrix} egin{bmatrix} \Delta x \ \Delta \lambda \end{bmatrix} = egin{bmatrix} r_1 \ r_2 \end{bmatrix}$$

2. Substitute

$$\Delta x = (V + RR^T)^{-1}(r_1 + B^T \Delta \lambda)$$

3. Solve

$$W := B(V + RR^T)^{-1}B^T$$
 $W\Delta\lambda = r_2 + B(V + RR^T)^{-1}r_1$

4. Recover Δx and Δz

Sherman-Morrison-Woodbury Formula

$$(V + RR^{T})^{-1} =$$

$$V^{-1} - V^{-1}R(I + R^{T}V^{-1}R)^{-1}R^{T}V^{-1}$$

- Never calculate the $m \times m$ matrix
- Only form and factor $k \times k$ matrix

Testing Environment

- Workstation specifications
 - 296 MHz Ultrasparc
 - 768 MB RAM
 - 18 GB locally mounted disk
- Data
 - 60 million randomly generated observations
 - Each observations has 34 features

Out-of-Core Computation

- Consider a massive support vector machine
 - 60 million observations
 - 35 features
- Total storage consumption of 3.75 18 gigabytes
- In-core solution not possible

- Access data sequentially
- Stream from disk using asynchronous I/O
 - Overlap direction calculations with data reads

Impact on Average Time per Iteration

Comparison to SVMTorch

Results – Iterations

Results – Total Time

Semismooth Method

- Reformulate as a system of equations
- Apply a Newton method to calculate a zero
- Properties
 - One solve per iteration
 - Implicitly exploits active set information

Reformulation

• NCP-Functions

$$\phi(a,b) = 0 \Leftrightarrow 0 \le a \perp b \ge 0$$

• Fischer-Burmeister function

$$\phi_{FB}(a,b)=a+b-\sqrt{a^2+b^2}$$

• System of equations

$$\Phi_i(x) = \left\{egin{array}{ll} \phi(x_i, F_i(x,y)) & ext{if } i \in \{1,\ldots,n\} \ G_{i-n}(x,y) & ext{if } i \in \{n+1,\ldots,n+m\} \end{array}
ight.$$

• $\Phi(x^*) = 0 \Leftrightarrow x^*$ solves complementarity problem

Basic Algorithm

- \bullet $\Phi(x)$ is not differentiable semismooth
- Use semismooth Newton method
 - Let $H_k \in \partial_B \Phi(x^k)$
 - Calculate direction: $d^k = -H_k^{-1}\Phi(x^k)$
 - Update: $x^{k+1} = x^k + \alpha^k d^k$
- α^k determined by Armijo linesearch on merit function

$$\Psi(x) := \frac{1}{2}\Phi(x)^T\Phi(x)$$

• $\Psi(x)$ is differentiable with $\nabla \Psi(x^k) = H_k^T \Phi(x^k)$

Semismooth Algorithm

1. Calculate $H^k \in \partial_B G(x^k)$ and solve the following system for d^k :

$$H^k d^k = -G(x^k)$$

If this system either has no solution, or

$$\nabla f(x^k)^T d^k \le -p_1 \|d^k\|^{p_2}$$

is not satisfied, let $d^k = -\nabla f(x^k)$.

2. Compute smallest nonnegative integer i^k such that

$$f(x^k + \beta^{i^k} d^k) \le f(x^k) + \sigma \beta^{i^k} \nabla f(x^k) d^k$$

3. Set $x^{k+1} = x^k + \beta^{i^k} d^k$, k = k+1, and go to 1.

General Convergence Theory

Let $F: \mathbb{R}^n \to \mathbb{R}^n$ be continuously differentiable. Then,

- 1. The semismooth algorithm applied to Φ_{FB} is well-defined.
- 2. If $\{x^k\}$ is a sequence generated by the semismooth algorithm applied to Φ_{FB} , then any accumulation point of $\{x^k\}$ is a stationary point for

$$\min_{x \in \Re^n} \Psi(x)$$

3. If x^* is one such accumulation point for which x^* is a strongly R-regular solution to the complementarity problem, then $\{x^k\} \to x^*$ at a Q-superlinear rate. If in addition, F' is a locally Lipschitz continuous function at x^* , then the rate of convergence is Q-quadratic.

LSVM Specific Semismooth Theory

Let $\{(\mu^k, \gamma^k)\}$ be a sequence generated by the semismooth algorithm applied to the following complementarity problem:

$$\begin{split} 0 &\leq \left(\frac{1}{\nu}I + DAA^TD^T\right)\mu - De\gamma - e &\perp &\mu \geq 0 \\ 0 &= e^TD^T\mu \end{split}$$

Then $\{(\mu^k, \gamma^k)\}$ converges to the unique solution (μ^*, γ^*) and the rate of convergence is Q-quadratic.

Direction Properties

- $\partial_B \Phi(x^k) \subseteq \{D_a + D_b F'(x^k)\}$ for appropriate D_a, D_b
- In particular
 - 1. $D_a > 0$
 - 2. $D_b \geq 0$
 - 3. $D_a + D_b > 0$
- $(D_b)_{i,i} = 0$ for most observations near solution
 - Reduction in work during direction calculation

Percentage of Observations with $(D_b)_{i,i} = 0$

Direction Calculation

• Solve the following linear system at each iteration

$$(D_a + D_b (\frac{1}{\nu}I + DAA^TD^T)) \Delta \mu - D_b De \Delta \gamma = r^1$$

$$e^T D^T \Delta \mu = r^2$$

• Use block elimination to solve for $(\Delta \mu, \Delta \gamma)$

$$y := \left[D_a + D_b \left(\frac{1}{\nu}I + DAA^TD^T\right)\right]^{-1} D_b De$$
 $z := \left[D_a + D_b \left(\frac{1}{\nu}I + DAA^TD^T\right)\right]^{-1} r^1$
 $\Delta \gamma := \frac{r^2 - e^TD^Tz}{e^TD^Ty}$
 $\Delta \mu := y\Delta \gamma + z$

• Sherman-Morrison-Woodbury formula

Results – Iterations

Results – Total Time

Comparison

- Interior-Point Method
 - + Solves many different formulations
 - + Takes few iterations
 - Two solves per iteration
 - Always uses all variables
- Semismooth Method
 - + Implicitly uses an active set
 - + Takes few iterations
 - + One solve per iteration
 - Restricted to positive definite formulations

Future Directions

- Public release of codes
 - Nonlinear kernels
 - Multiple category problems
 - Parallel implementation
- Applications
 - Solver selection using NEOS data
 - Design of protein folding potentials
 - Genomics and proteomics
- Ability to solve humongous problems